

VIDYA BHAWAN, BALIKA VIDYAPITH

Shakti Utthan Ashram, Lakhisarai-811311(Bihar) (Affiliated to CBSE up to +2 Level)

Class: X

Subject: Mathematics

Date: 19/04/2021

.....

Real Number

Fundamental Theorem of Arithmetic:

Every composite number can be expressed (factorised) as a product of primes, and this

factorisation is unique, apart from the order in which the prime factors occur.

This theorem also says that the prime factorisation of a natural number is unique, except for the order of its factors.

For example, 20 can be expressed as 2×2×52×2×5

Using this theorem, the LCM and HCF of the given pair of positive integers can be calculated.

LCM = *Product of the greatest power of each prime factor, involved in the numbers.*

HCF = *Product of the smallest power of each common prime factor in the numbers.*

Exercise 1.2 (NCERT)

Question 1: Express each number as a product of its prime factors:

(i) 140	(ii) 156	(iii) 3825	(iv) 5005	(v) 7429
Solution				

Solution:

 $140=2\times2\times5\times7=2^{2}\times5\times7$ i.

Question 2: Find the LCM and HCF of the following pairs of integers and verify that $LCM \times HCF = product of the two numbers.$

(ii) 510 and 92 (iii) 336 and 54 (i) 26 and 91 Q. (i) 26 and 91 **Solution:** The prime factors of $26=2^1 \times 13^1 = 2^1 \times 7^0 \times 13^1$

The prime factors of $91=\times7\times13=2^{0}\times7^{1}\times13^{1}$

Therefore, LCM = [Product of the greatest power of each prime factor, involved in the numbers.]

 $ICM = 2^{1} \times 7^{1} \times 13^{1} = 182$

And, HCF = [Product of the smallest power of each common prime factor in the numbers.]

 $HCF = 2^{0} \times 7^{0} \times 13^{1} = 1 \times 1 \times 13^{1} = 13$

verify

Now, LCM×HCF=182×13=2366

Product of given numbers =26×91=2366

Therefore, LCM × HCF = Product of the given two numbers <u>Verified</u>

Question 3: Find the LCM and HCF of the following integers by applying the prime factorization method.

(i) 12, 15 and 21

(ii) 17, 23 and 29

(iii) 8, 9 and 25

(i) 12, 15 and 21

Solution: Prime factors of $12=2\times2\times3=2^2\times3^1\times5^0\times7^0$

Prime factors of $15=3^{1}\times5^{1}=2^{0}\times3^{1}\times5^{1}\times7^{0}$

Prime factors of $21=3^{1}\times7^{1}=2^{0}\times3^{1}\times5^{0}\times7^{1}$

Therefore, LCM = [Product of the greatest power of each prime factor, involved in the numbers.]

LCM =2²×3¹×5¹×7¹ = 420 *Answer*

HCF = [Product of the smallest power of each common prime factor in the numbers.]

HCF = $2^{0} \times 3^{1} \times 5^{0} \times 7^{0} = 3$ **Answer**

Remaining questions do your self